
Methods to solve non-smooth problems with high

dimensionality

Filip Rozsypal∗

May 22, 2016

1 Introduction

In this chapter, I describe how a projection algorithm can be extended to solve dynamic

stochastic equilibrium models of high dimensionality and non-smooth decision rules. I show

how this framework can be applied to solve a multi-sector business cycle model with en-

dogenous growth such as the one in the first chapter of this dissertation.

I present and extend further the method of ergodic grids developed by Judd et al.

(2012). Furthermore, I allow the shocks to have kinks in the way they affect the outcomes

in the model. Having a methodology to solve models with kinks is important, because

endogenous outcomes of standard shocks1 can have two kinds of effects on outcomes: first

binary effects, i.e. whether an action is taken or not, and second intensity effects, i.e.

conditional on the action being taken, the size of the shock matters for the magnitude of

the outcome. For example, following a low productivity draw, a firm might decide not to

start exporting. In such a situation, conditional on the productivity being bad enough,

the actual value of the productivity shock does not matter. On the other hand, if the

productivity shock is above a certain threshold, the firm will start exporting and exports

might be increasing the the size of the shock. The kink is then an outcome of the firm’s

optimisation and it has implications for aggregate outcomes.

∗Centre for Macroeconmics, London Schoolof Economics. Email: f.rozsypal1@lse.ac.uk. I thank for

useful comments to Wouter den Haan, Kenneth Judd and Serguei Maliar.
1Meaning shocks which have standard support, like normal shocks.

1

By construction, models with kinks cannot be solved by standard perturbation methods

for two reason. First, linearisation smooths out the effect of the kinks. Second, the lineari-

sation is performed around a steady state, which traditionally corresponds to the situation

with the mean value of shocks. However, in the example with export, the mean value of

productivity shock is either above or below the threshold, which means that in the non-

stochastic steady state either all firms are exporting or there is no export at all. Therefore,

it is necessary to use some global method instead of relying on local approximations.

The challenge of using global methods on large models is the curse of dimensionality

caused by the grids and numerical quadrature which makes the requirements on compu-

tational time and memory grow exponentially. This chapter presents a framework which

tackles these numerical problems. This chapter also contains simplified fragments of code

to help understand the algorithms it describes.2

To test the methods described in this chapter, I consider a simple real business cycle

model enriched with an extra source of non-linearity. Given that the goal of the exercise

in this chapter is to highlight numerical properties of selected solution methods, this addi-

tional non-linearity makes an otherwise standard RBC model too complicated for standard

solution methods.

1.0.1 RBC model with variable investment costs

Consider an economy with standard Cobb-Douglas aggregate production function

Yt = exp(zt)K
α
t ,

where the representative households maximises its lifetime utility of consumption

max
∞∑
t=0

βtE0
C1−σ
t

1− σ

subject to the following budget constraint:

Ct +Kt+1 + Γ(Kt+1) = Yt − (1− δ)Kt.

2The actual codes used in this chapter are available for download from the author’s webpage: http:

//people.ds.cam.ac.uk/fr282/chapter2_codes.zip

2

http://people.ds.cam.ac.uk/fr282/chapter2_codes.zip
http://people.ds.cam.ac.uk/fr282/chapter2_codes.zip

This budget constraint is standard apart from the investment function Γ. It is there to

make the model more non-linear and therefore harder to solve. In the absence of this cost

we know that the policy function of RBC model is very close to being linear (which is also

why first-order perturbation works in the context of a basic RBC). To test the methods

described in this chapter, I assume

Γ(Kt) = κ0

(
1

1 + exp(κ1(Kt − κ2))
+

1

1 + exp(κ3(Kt − κ4))

)
where κ controls the location of two highly non-linear regions in the adjustment costs.

Choosing κ0 = 0 leads to Γ(K) ≡ 0 and the model becomes a plain vanilla real business

cycle model. On the other hand, setting κ1 and κ3 high will introduce almost a kink at the

locations given by κ2 and κ3. The shape and the value of the coefficients can be seen in

figure 1. For the vast majority of time, the extra investment costs are essentially zero so

the optimal behavior should be very close to the one of plain vanilla RBC model. However,

for very low levels of capital it strongly incentivises the agent to save and for very high

levels of capital to consume, relative to the plain RBC model. The effect of the Γ function

on the simulated series can be seen in figure 10, page 23.

7 8 9 10 11 12
0

2

4

6

·10−2

k

Γ
(k

)

Figure 1: Extra investment costs occur for very low and very high levels of capital. This
forces the agent to save relatively more for low levels of capital and consume more for high
levels of capital compared to standard RBC model. The values generating this function
are: κ0 = 0.075, κ1 = 15 = −κ3, κ2 = 7.5, κ4 = 11.5.

Finally, the aggregate productivity follows an AR(1) process:

zt+1 = ρzt + εt+1

3

where ε ∼ N(0, σ2
ε). The parameters in the model are κ0 = 0.075, κ1 = 15, κ2 = 7.5, κ3 =

−15, κ4 = 11.5, α = 0.33, β = 0.95, δ = 0.025, ρ = 0.95, σε = 0.02 and σ = 2. The value

for κs was chosen such that it mildly restricts where the model would live for κ0 = 0. The

solution of this model can be found in section 3.4.1 on page 22.

To solve this model by projection algorithm, I approximate the saving function. If

the order of the approximation is equal to n, then the approximated policy function is a

combination of polynomials of degree n in both capital k and productivity z and all of the

cross products. The resulting function is

kt+1(kt, zt) ≡ φξ(kt, zt) = X(kt, zt)ξ,

where ξ has 4 elements for n = 1 (constant, linear in k, linear in z and cross product

between k and z). For a general order n, there are (n+ 1)2 parameters in ξ.

2 Selected existing literature on solving large models

with global methods

In this section I review the recent contributions to the numerical methods literature for

obtaining global solutions which are particularly useful for highly dimensional settings.

Most notably, these are two recent contributions, Judd, Maliar and Maliar (2011) and

Judd, Maliar and Maliar (2012)3

The key challenge for a global solution to large macroeconomic models is the curse of

dimensionality, the fact that the number of points in a product grid grows exponentially

with the dimension of the model and hence such a grid becomes quickly computationally

infeasible. The idea to substitute the product grid with a set of points generated en-

dogenously by simulating the model was pioneered by Marcet (1988) and den Haan and

Marcet (1990). Their Parametrised expectation algorithm (PEA) used a simulated path of

the model to implement Monte Carlo integration to evaluate the expectation in the Euler

equation.

3For overview see , made significant contributions and opened the road for further research, which this
chapter contributes to Maliar and Maliar (2014).

4

2.1 Numerically stable methods

Judd et al. (2011) improved PEA in the following way. They used the grid coming from the

set of all simulated points. However, they evaluated the expectation in the Euler equation

by quadrature and introduced a set of more robust regression approaches to recover the

parameters of the parametrized policy function. Following the notation by Maliar and

Maliar (2014, page 364), the solution (i.e. the policy function which solves the model)

then has form of

γt = Xtξ + εt, (1)

where Xξ is the approximation of true policy function γ and ε captures the difference

between the approximated policy function and the true one. Just as in standard regression,

a high degree of collinearity between individual components of state space representation

Xt complicates the search for the value of parameters ξ.

Judd et al. (2011) address this problem by suggesting alternatives to a standard OLS

type of regression. First, they de-mean and normalise the variables in X. They also use

orthogonal polynomials rather than directly using the variables themselves. Finally, they

discuss robust alternatives to ordinary least squares, including least absolute deviations

and principal components. They show that the combination of these steps can increase

the precision of the solution by several orders of magnitude.

2.2 Ergodic grid construction

Judd et al. (2012) improve on their previous method by using ergodic grids. In the simu-

lation, there are some areas which are visited much more often than others. This suggests

that the expectation is computed at very similar points unnecessarily many times when

using the whole set of the simulated points, like in the PEA algorithm.

To address this problem, Judd et al. (2012) introduced a clustering algorithm which

selects a grid from all the simulated points in the following way:

1. compute the distance among the points4

2. cut the outliers (points in the simulation where the number of other points in a δ

neighborhood is less than some threshold)

4The distance is defined over standardised variables, i.e. the simulation data is transformed using a
principal components approach to make the deviations along different directions comparable.

5

3. construct the grid

(a) pick a random point and discard all points which are closer than a given value

δ

(b) repeat until there are no points left either to selected or to discard

4. transform the resulting grid back by inverting the normalisation done in the first step

Possible implementation of this algorithm can be seen in figure 2.

As another step to facilitate the solution of multidimensional models, Judd et al. (2012)

also suggest a procedure based on iteration of the Euler equation instead of using some

standard Newton algorithm based solver. The reason is that the iteration is very fast even

for very large models, whereas Newton derivative-based optimisation algorithms require

the knowledge of the Jacobian matrix, which is typically obtained by finite differences

which is very costly in high dimension.

The Euler equation can be written as 1 = βEu
′(ct+1)
u′(ct)

Rt+1. However, during the process

of finding the best approximation of the policy function, the Euler equation is not going

to hold.5 Judd et al. (2012) use the following observation: if 1 > βEu
′(ct+1)
u′(ct)

Rt+1, then it

would be optimal to save more, because the interest rate does not compensate enough for

the difference in marginal utilities. This means that tomorrow’s capital needs to be higher

than what it is suggested by the (current iteration) of the policy function. The trick is

then to use this suggested difference to update the policy function.

If one multiplies both sides of the Euler equation by kt+1, and using tilde to acknowledge

the fact that the Euler equation does not hold perfectly, then in the context of the simple

RBC model from the beginning of this chapter, it would be as follows:

k̃t+1 = βE
u′(ct+1)

u′(ct)
Rt+1kt+1 = ρkt+1 (2)

and then project the left-hand side k̃t+1 onto the state vector (instead of kt+1) to obtain

the policy rule parameters, using the fact that the values of ρ > 1 are associated with

savings which is too low: marginal utility tomorrow is higher than marginal utility today,

which implies lower consumption tomorrow.

In what follows, when I mention iterative solution, I mean the solution obtained by

iterating equation (2). In contrast, a solver solution uses a solver to find ξ which minimize

5By not holding I mean that the error is higher than the one given by the best possible coefficients for
given shape of the policy function approximation.

6

1 function Grid = g e t g r i d s s i m (Σ ,minN ,maxN, dde l ta)

2 %% get d i s t a n c e and den s i t y , f o l l o w i n g JMM(2015)

3 Sigma demean = (Sigma−repmat (mean(Sigma) , s ize (Sigma , 1) ,1)) . / . . .

4 repmat (sqrt (var (Sigma)) , s ize (Sigma , 1) ,1) ;

5 [˜ , ˜ ,V] = svd (Sigma demean) ; %s i n g u l a r v a l u e decompos i t i on

6 Sigma normal ised = Sigma demean∗V;

7 D mat = distmat (Sigma normal ised) ; %compute d i s t a n c e mat r i x

8 g hat = . . . ; % den s i t y as d e f i n e d i n JMM(2012) , equa t i on 2

9

10 %% cut o f f o u t l i e r s

11 i f ddelta>0

12 s o r t Σ accord ing to g hat and cut o u t l i e r s cor re spond ing to de l t a

13 end

14

15 %% s e l e c t the g r i d

16 m u l t i p l i e r =1; N po ints chosen=0 % loop i n i t i a l i s a t i o n

17 %out e r l oop choose s the r i g h t t h r e s h o l d

18 while (N points chosen<=max points) && (N points chosen>=min points)

19 th r e sho ld = median(median(D mat))∗m u l t i p l i e r ; %d i s t a n c e t h r e s h o l d to be e l im i n a t e d

20 f i n a l s e t n o r m a l i s e d = zeros (s ize (Sigma normal ised)) ;

21

22 %se t o f p o i n t s to be con s i d e r ed , a t the s t a r t a l l p o i n t s need to be c o n s i d e r e d

23 con s id e r = ones (s ize (Sigma normalised , 1) , 1) ; %1 f o r p o i n t s s t i l l to be con s i d e r ed ,

24 %0 f o r the p o i n t s a l r e a d y e l im i n a t e d

25 i n s e t = zeros (s ize (Sigma normalised , 1) , 1) ; %se t o f a l r e a d y chosen p o i n t s i n the g r i d

26

27 %in n e r l oop p i c k e s the g r i d f o r a p a r t i c u l a r v a l u e o f d i amete r t h r e s h o l d

28 while ˜ a l l (con s id e r==0) %stop i f a l l p o i n t s have been c on s i d e r e d

29 index = find (cons ider , 1 , ’ f i r s t ’) ; %f i n d the f i r s t p o i n t to c o n s i d e r

30 con s id e r (index) = 0 ; %do not c o n s i d e r i t anymore

31 i n s e t (index) = 1 ; %add i t to the chosen s e t

32 con s id e r = cons id e r . ∗ (D mat(index , :)>th r e sho ld) ’ ; %keep c o n s i d e r i n g on l y p o i n t s

f u r t h e r than t h r e s h o l d away

33 end

34 N points chosen = sum(i n s e t) ;

35 i f N points chosen>max points % ad j u s t the m u l t i p l i e r i f needed

36 m u l t i p l i e r = m u l t i p l i e r∗1 .15 %too many po i n t s , i n c r e a s e the t h r e s h o l d

37 else N points chosen<min points

38 m u l t i p l i e r = m u l t i p l i e r∗ 0 . 9 5 ; %too few po i n t s , d e c r e a s e the t h r e s h o l d

39 end

40 end

41 Grid = Sigma (find (i n s e t) , :) ; %f i n d the p o i n t s i n the o r i g i n a l Sigma

Figure 2: Algorithm to find ergodic grid. Inputs are simulated series Σ, dimension of the
grid (minN,maxN) and how to deal with outliers (ddelta).

7

the errors on the grid directly. My implementation of the iterative solution method is

outlined in figure 3.

8

1 while cont

2 %% s imu l a t e the model on l y i f needed

3 i f s imulate

4 s imulate = 0 ;

5 update g r id s = 1 ;

6

7 s imulate the mode l ;

8

9 %check whether new g r i d i s needed

10 i f s imu la t i on moments c l o s e to the prev ious ones

11 update g r id s = 0 ;

12 end

13 end

14 %% update g r i d s

15 i f update g r id s

16 update g r id s = 0 ;

17 [. . .] = g e t g r i d s s i m (. . .) ; % gene r a t e g r i d s

18 [. . .] = renorma l i z e (. . .) ;% ren o rma l i z e p o l i c y f u n c t i o n

19 k change cum = zeros (s ize (g r i d)) ; %re− i n i t i a l i z e cumu l a t i v e c a p i t a l c oun t e r

20 end

21

22 %% update p o l i c y f u n c t i o n pa ramete r s

23 y = βE [uc(Σt+1, ξ)/uc(Σt, ξ)Rt+1(Σt, ξ)] kt+1(Σt, ξ) %l e f t hand s i d e

24 X = f X (Σ) ; %r e g r e s s o r s

25 ξnew=(X’X)−1X’ y ; %new gues s

26 ξ=λξnew+(1−λ)ξ ; %homotopy

27

28 %check g r i d i s c o n s i s t e n c y wi th the behav i ou r imp l i e d wi th the p o l i c y f u n c t i o n

29 i f sav ing not balanced

30 move the g r id

31 end

32

33 %stop on l y i f the s imu l a t i o n has not changed

34 i f converged (ξnew ,ξold)

35 cont = 0 ; % s o l u t i o n conve rged

36 end

37

38 %check f o r d i v e r g e n c e

39 i f ξ not converg ing

40 i f i n c r e a s e in g r id might he lp %t r y wi th l a r g e r g r i d or g i v e up

41 make gr id l a r g e r next time

42 update g r id s = 1 ;

43 else

44 cont = 0 ; %conve rgence not ach i eved , s t opp i ng

45 end

46 end

47

48 k change cum = k change cum +k(grid, ξnew)− k(grid, ξold) ; %change i n p o l i c y f u n c i t o n

49 i f max(abs (k change cum)) i s too l a r g e

50 s imulate = 1 ; %re−s imu l a t e

51 k change cum = 0 ; %re− i n i t i a l i z e coun t e r

52 end

53 end

Figure 3: Core loop which solves the model iteratively with adaptive endogenous grids.

9

3 New methods

3.1 Elimination of loops for projection problems

MATLAB programming environment is a popular tool for solving macroeconomic models.

However, it is known to be relatively slow compared to lower level programming languages

like Fortran or C++. Aruoba and Fernandez-Villaverde (2014) demonstrate this fact using

a value function iteration algorithm to solve a standard neoclassical growth model. In

particular, loops are known to be computationally very slow in MATLAB relative to other

programming languages.6

One particularly bad implementation of value function iteration can be seen in figure

4. This code is going to be very slow because of the presence of loops. This means that the

odds are stacked against MATLAB when comparing the speed of finding a solution using

value function iteration as in Aruoba and Fernandez-Villaverde (2014).

1 for each po int ki on c a p i t a l g r i d k

2 for each po int zj on p r od u c t i v i t y g r id z

3 for each p o s s i b l e sav ing d e c i s i o n k′m
4 for each Gauss−Hermite quadrature node εn ∈ ε
5 compute V (ki, k

′
m, zj , εn)

6 end

7 V (ki, k
′
m, z) =

∑N
n=1 wnV (ki, k

′
m, zj , εn)

8 end

9 V (ki, zj) = maxk′ V (ki, zj)

10 end

11 end

12 check convergence o f V (k, z)

Figure 4: Value function algorithm. This particular implementation is very slow in MAT-
LAB because of the pervasive loops.

On the other hand, MATLAB is very fast when using matrices. The popular term

vectorisation describes the implementation of loop-heavy code in a way which eliminates

loops and substitutes them (where possible) with matrix multiplications. Because projec-

tion algorithms are more suitable to vectorisation than value function iteration, MATLAB

is likely not to lag behind lower level languages as much when the speed is evaluated in

this setting rather than value function iteration. In fact, projection algorithms can be

implemented in a way that eliminates all loops apart from the one which controls the

convergence.

6Aruoba and Fernandez-Villaverde (2014) found found MATLAB to be approximately 10 times slower
than Fortran or C++.

10

A projection algorithm parametrizes a policy function (for example the saving function)

and then minimizes errors induced by optimality of the model (for example Euler equation)

ξ = arg min |Eξ(k, z)|

where the error function E is

Eξ(kt, zt) = E

[
u′(cξ(kt+1, zt+1))

u′(cξ(kt, zt))
(1 + rξ(kt+1, zt+1)− δ)

]
− 1 (3)

and |.| is the standard Euclidean norm. The policy function for saving is approximated

using some flexible functional form parametrized by a set of parameters ξ: kt+1 = fξ(kt, zt)

and consumption then follows from the budget constraint: cξ(kt, zt) = exp(zt)k
α
t +(1−δ)kt−

fξ(kt, zt) and the interest rate is equal to the marginal productivity of capital r(kt, zt) =

α exp(z)kα−1
t . The expectation operator is then numerically approximated using Gauss-

Hermite quadrature of order N giving nodes εi and weights wi, i = 1, . . . , N (assuming

that the errors are normally distributed). Then the error function at a particular point

(kt, zt) becomes

Eξ(kt, zt) =
N∑
i=1

wi

(
u′ (exp(ρzt + εi)(fξ(kt, zt))

α + (1− δ)fξ(kt, zt)− fξ(fξ(kt, zt), ρzt + εi))

u′(exp(zt)kαt + (1− δ)kt − fξ(kt, zt))
×

× (1 + r(fξ(kt, zt), ρzt + εi)− δ)

)
− 1 (4)

The error of the Euler equation Eξ(kt, zt) is computed on a grid for capital k and pro-

ductivity z and the ξ which minimizes |Eξ(k, z)| is selected. The most straightforward

implementation of this approach uses loops, as demonstrated in figure 5.

1 for each po int ki on c a p i t a l g r i d k

2 for each po int zj on p r od u c t i v i t y g r id z

3 for each gauss−hermite quadrature node εn ∈ ε
4 compute Eξ(ki, zj , εn)

5 end

6 Eξ(ki, zj) =
∑N
n=1 wnEξ(ki, zj , εn)

7 end

8 end

9 ξ = arg min |Eξ(k,z)|

Figure 5: Projection algorithm with loops

11

However, the loops can be eliminated. The trick is to re-write the error function as a

function of future realisations of uncertainty and to accept vectors instead of just scalars.

First, let Ẽξ : R3 → R so the value of the Euler equation error is computed for a given

quadrature node (on top of given capital and productivity)

Ẽξ(kt, zt, εi) =

(
u′ (exp(ρzt + εi)(fξ(kt, zt))

α + (1− δ)fξ(kt, zt)− fξ(fξ(kt, zt), ρzt + εi))

u′(exp(zt)kαt + (1− δ)kt − fξ(kt, zt))
×

× (1 + r(fξ(kt, zt), ρzt + εi)− δ)

)
− 1 (5)

The second step is to code Ẽξ(kt, zt, εi) to accept vectors as arguments. If kt, zt and ε are

vectors of the same length M , then Ẽξ(k, z, ε) is a vector of the same length M and the

error on every point on the grid can be computed as W Ẽξ(k, z, ε), where W is a weighting

matrix. The input vectors and W can be constructed as described in figure 6.

The construction of input vectors is straightforward; all that is needed is a function

comb vector which uses two inputs x = [x1, . . . , xN] and y = [y1, . . . , xM] to generate two

output vectors x̃ and ỹ of length MN such that

x̃ = [
N︷ ︸︸ ︷

x1 . . . xN . . . x1 . . . xN︸ ︷︷ ︸
NM

]

ỹ = [
N︷ ︸︸ ︷

y1 . . . y1 . . . yM . . . yM︸ ︷︷ ︸
NM

]

The code uses this function twice; first, to combine grids for capital and productivity and

second, to combine these grids with nodes for the quadrature. The resulting vectors are as

follows:

k̃ = [

NMJ︷ ︸︸ ︷
J︷ ︸︸ ︷

k1 . . . k1 . . .

J︷ ︸︸ ︷
kN . . . kN︸ ︷︷ ︸

NJ

. . .

J︷ ︸︸ ︷
k1 . . . k1 . . .

J︷ ︸︸ ︷
kN . . . kN]

z̃ = [

NMJ︷ ︸︸ ︷
J︷ ︸︸ ︷

z1 . . . z1 . . .

J︷ ︸︸ ︷
z1 . . . z1︸ ︷︷ ︸

NJ

. . .

J︷ ︸︸ ︷
zM . . . zM

J︷ ︸︸ ︷
zM . . . zM]

12

1 % precompute t h equad r a t u r e nodes

2 [nodes , weights] = GaussHermite 2 (J) ; %gene r a t e nodes and we i gh t s o f o r d e r J

3 nodes = sqrt (2)∗ s i g a ∗nodes ;

4 weights = pi ˆ(−0.5)∗weights ;

5

6 while ˜ converged

7 %% s imu l a t e the model the ge t s e r i e s f o r c a p i t a l and p r o d u c t i v i t y

8 Σ =simulate mode l (z̃, ξ)

9 [k̃, z̃] = g e t g r i d s s i m (Σ , . . .) % get g r i d s

10

11 %% combine g r i d s

12 [k gr id1 , z g r i d 1] = comb vector (k̃, z̃) ; % ba s i c r e c t a n g u l a r g r i d f o r s t a t e s

13 %combine r e c t a n g u l a r g r i d s w i th quad r a tu r e nodes

14 [ε̃ , k̃] = comb vector (nodes ’ , k g r i d1) ;

15 [˜ , z̃] = comb vector (nodes ’ , z g r i d 1) ;

16 [we ight s g r id , ˜] = comb vector (weights ’ , z g r i d 1) ;

17 %con s t r u c t we i gh t i n g mat r i x W

18 l k = length (k g r id1) ; lkkk = length (k̃) ; ln = length (nodes ’) ;

19 W = zeros (lkkk , l k) ;

20 for i =1: l k

21 W (1+(i −1)∗ ln : i ∗ ln , i) = w e i g h t s g r i d (1+(i −1)∗ ln : i ∗ ln) ’ ;

22 end

23

24 %% update the s o l u t i o n

25 ξ̃ = arg min |WEξ(k̃, z̃, ε̃)| %f i n d update

26 i f ξ̃ i s c l o s e to ξ̃

27 converged = 1 ;

28 else

29 ξ = λξ̃ + (1− λ)ξ

30 end

31 end

Figure 6: Projection algorithm with only one loop (only the inside of the outer while loop
controling the overall convergence).

ε̃ = [

NMJ︷ ︸︸ ︷
J︷ ︸︸ ︷

ε1 . . . εJ . . .

J︷ ︸︸ ︷
ε1 . . . εJ︸ ︷︷ ︸

NJ

. . .

J︷ ︸︸ ︷
ε1 . . . εJ . . .

J︷ ︸︸ ︷
ε1 . . . εJ]

The weighting matrix W then has to have the following shape:

W =

NMJ︷ ︸︸ ︷
w 0 . . . 0

0 w . . . 0
...

. . .
...

0 . . . 0 w

NM

13

1 function [xx , yy] = comb vector (x , y)

2 %get the v e c o t r l e n g t h s

3 l x = length (x) ; l y = length (y) ;

4

5 % f i r s t v e c t o r r e p e a t s i t s e l f l y t imes

6 xx = repmat (x , 1 , l y) ;

7

8 % the second v e c t o r r e p e a t s s u b s e qu en t e l y each e l ement i n y e x a c t l y l x t imes

9 yy = [] ;

10 for i =1: l y

11 yy = [yy repmat (y (i) , 1 , l x)] ;

12 end

13 end

Figure 7: combine vectors function to combine two vectors.

where w = [w1 . . . wJ] and 0 = [0 . . . 0] are vectors of length J .

If W , ε̃, k̃ and z̃ are constructed as described and if Ẽξ(k, z, ε) is a column vector, then

W Ẽξ(k, z, ε) is a column vector of length N ×M and hence minimising |W Ẽξ(k, z, ε)|
with respect to ξ yield the same result as if the result was computed using loops.

Applying this method can generate significant speed-up, in some situation making the

solution more than 100x faster, as documented in figure 8.

3.2 Policy function shape and the representation of the state

space

The projection algorithm approximates the true policy function with some function ϕ(X, ξ),

where X is some vector function of the state space. The policy function approximation

hence requires two choices; what functional form to use and how to simplify the state space

to make it conform with the choice of the policy function shape. Possible candidates for

the policy function shape are:

• Xξ

• exp(Xξ)

• νϕ0 +
νϕ1

1+exp(−Xξ) where νϕ0 and νϕ1 are model parameters which are not being optimised

and the solution should not depend on their values as the extreme values should not

be reached.

The advantage of the second and third specifications is that they restrict the outcome to lie

within a certain interval (positive numbers for the second case and in the interval (νϕ0 , ν
ϕ
1)

14

500 1,000 1,500 2,000 2,500 3,000
0

1

2

3

4

total grid size

ti
m

e
[s

ec
]

loop
parallel loop
direct

500 1,000 1,500 2,000 2,500 3,000
0

20

40

60

80

100

120

140

total grid size

sp
ee

d
-u

p
fa

ct
or

speed-up factor

Figure 8: Vectorisation can yield significant benefits in computation time. In this example
the Euler equation error (using 7 quadrature points) was evaluated on a grid for capital and
productivity. Number of points in the capital grid was 4/3 of the points in the productivity
grid, the total number, given by the product of the two, is depicted on the x-axis. Y-axis
shows average time in seconds over 10 runs. The right panel shows the average speed-up
using the direct method over the better of the two loop approaches. The computations are
done on Intel i7-3930K 6 core CPU with 32 GB of RAM.

in the third case). This can help with numerical issues like negative consumption, which

might be otherwise encountered during optimisation.7

The second choice to be made concerns the representation X of the state space Σ. The

fact that we approximate the true policy function with a polynomial means that we are

introducing some error into the solution. The error comes from the limitation of the shape

of the function, but it also depends on how well X captures Σ.

Numerical stability of the process of recovering ξ depends on the so-called condition

number of matrix X. To see this, recall that in the setting of equation (1), the vector of

interest ξ could be obtained by standard regression formula (X ′X)−1X ′γ. From regres-

sion perspective, ill-conditioned X corresponds to a situation of strong colinearity among

columns of X.

Due to multi-colinearity, it is not advisable to just use different orders of individual

state variables. One way how to limit the colinearity is to use some family of orthogonal

polynomials as a base instead. However, this approach is not automatically guaranteed to

7Some solvers might not respect the supplied constraints (like positive consumption or non-negative
labour) during intermediate optimisation steps.

15

deliver X which is well conditioned. The reason is that the orthogonality is in this context

defined with respect to a specific weighting function over a specific interval. Hence for the

vectors of X to be uncorrelated, the domain of the weighting function has to correspond

to the domain of the model.

This problem can be confronted directly. Realizing that scaling and normalising in-

fluences the numerical stability of the solution algorithm, I define normalising parameters

to directly affect the construction of X and choose them such that the condition of X is

minimised.

For example, suppose that the state vector consists of three variables, i.e. Σ =

[Σ1 Σ2 Σ3]. One simple choice would be

X = [1 Σ1 Σ2 Σ3].

Next, let:

X(ν) =

[
1

Σ1 − ν1

ν2

Σ2 − ν3

ν4

Σ3 − ν5

ν6

]
where ν = [ν1 . . . ν6] is chosen as

ν = arg minκ(X(ν))

where κ(X) = ‖X−1‖‖X‖ is the condition number.8 Then by construction, X(ν) is

better conditioned than X. Note that after changing the scaling parameters ν, the policy

function parameters ξ also have to be rescaled, so that

∀Σ : X(ν)ξ = X(ν̃)ξ̃.

Therefore the new policy function parameters ξ̃ can be found easily as

ξ̃ = (X(ν̃)′X(ν̃))
−1
X(ν̃)′X(ν)ξ

While formally both ν and ξ enter the policy function in a similar way, the two sets of

parameters are fundamentally different. The former are introduced to enhance numerical

stability and accuracy, whereas only the latter capture the decisions of the economic agents.

8In MATLAB, matrix norm corresponds to maximum singular value of the matrix.

16

For example, in the first chapter of this thesis I use the following functional form for

aggregate labour in production sectors:

lp = νϕ0 +
νϕ1

exp(−Xξ)

with

X =

1
k − νk̄
νσk

(
k − νk̄
νσk

)2

− 1
1

N

N∑
i=1

ei − νē
νσe

(
1

N

N∑
i=1

ei − νē
νσe

)2

− 1

1

N

N∑
i=1

µi − νµ̄
νσµ

(
1

N

N∑
i=1

µi − νµ̄
νσµ

)2

1

N

N∑
i=1

ãi − ν¯̃a

νσã

k − νk̄
νσk

1

N

N∑
i=1

ãi − ν¯̃a

νσã

where [νϕ0 , ν

ϕ
1 , νµ̄, νσµ] is set to [0, 0.75, µ̄, σµ] and all the other parameters are chosen to

minimize the condition number of matrix X. The problem of the household is such that

only the aggregate state matters. The distribution of individual sector variables (current

innovation step ei, relative productivity ãi and quality of research ideas µi for i = 1, . . . , N)

matters only as much as it helps to predict the future aggregate state.

The policy function for research labour (labour used in one given research firm), how-

ever, depends also on the variables of this particular sector. Therefore, the following

functional form is used

qPi = min{ν0, exp(Xξ)}

with

X =

[
1

k − νk̄
νσk

1

N

N∑
i=1

ãi − ν¯̃a

νσã

1

N

N∑
i=1

ei − νē
νσe

1

N

N∑
i=1

µi − νµ̄
νσµ

. . .

ei − νē
νσe

(
ei − νē
νσe

)2

− 1

(
ei − νē
νσe

)3

− 3
ei − νē
νσe

. . .

µi − νµ̄
νσµ

(
µi − νµ̄
νσµ

)2

− 1

]

17

3.3 Quadrature with truncated outcomes

In many situations, different realisations of a shock might change the chosen action both

quantitatively and qualitatively. For example, for low realisations of productivity, a firm

might decide not to produce at all and it might start producing only after productivity

is above some threshold. In such a setting, the firm might be earning zero profits for

realisations less or equal to the threshold and then the profits might be increasing in

productivity. I call the effect of a shock truncated, if the shock induces both a discrete

action and it has continuous effects if the action is taken.

In the first chapter of this thesis, the research firm receives an imperfect signal about

the quality of the project it can work on and it chooses the labour input upon observing

this information. This is implemented by assuming two shocks. First, there is the quality

of the research project µ, which is public knowledge at the time of decision. Second, there

is a luck factor ε, which is realised only after all decisions are made. The final outcome of

the innovation process is then

µ+ f(lr) + ε

where lr is the labour input of the research firm. This formulation simplifies a more realistic

signal extraction problem where the research firm observes a noisy signal about the quality

of its project.

Conditional on µ and the action lr, the outcome of innovation activity hence depends

on the luck factor ε. It turns out that there is a threshold value of the luck shock ε denoted

by ε such that for realisations ε ≤ ε, the research effort is not successful (hence it does not

matter if ε is just marginally below the threshold or if the threshold is missed by a lot).

For ε > ε the research is successful and the research firm will enter its production stage

next period. Furthermore, conditional on ε > ε, the size ε matters as it changes future

mark-ups and hence profits. In other words, the size of ε matters only as long as it is large

enough. The research firms are well aware of the implications of this setting when choosing

its optimal effort lr, as higher lr implies lower value of the threshold ε.

In general, consider a multi-sector setting where there are two shocks affecting each

sector i, one which has truncated effects, εi, and one which does not, µi. Here I show how

this structure can be exploited to reduce computation costs of computing expectations

E[g(Σt, εt+1,µt+1)] where Σt represents the state of the world at time t. The truncated

18

nature of the effect of ε formally written is the fact that ∃ε such that ∀ε′ < ε

g(Σt,µt+1, ε
′) = g(Σt,µt+1, ε)

In other words, the realisation of ε has to be large enough for ε to start to have any impact

on the outcome. This threshold value can depend on the state of the economy

εt+1 = ε(Σt)

This introduces a kink in conditional outcomes and non-linearity in expected outcomes.

Note that it is possible that the threshold depends on the behavior of the agents (which

in turn depends on the state). In such a setting, the true value of the threshold depends

on the true policy function. Therefore during the solution, the value of the threshold also

depends on the current parameters governing the approximation of the policy function.

The truncated nature of the outcomes allows for an effective way of implementing

Gaussian quadrature. For any function g, the following holds (omitting the Σt)

E[g(εt+1,µt+1)] = E[g(εit+1, ε−it+1,µt+1)|εit+1 ≤ εit+1]P(εit+1 ≤ εit+1)

+ E[g(εit+1, ε−it+1,µt+1)|εit+1 > εit+1]P(εit+1 > εit+1).

Using the no effect below the threshold property and P(εit+1 ≤ εit+1) = Φ(εit+1):

E[g(εt,µt+1)] = E[g(εit+1, ε−it+1,µt+1)]Φ(εit+1)

+ E[g(εit+1, ε−it+1,µt+1)|εit+1 > εit+1](1− Φ(εit+1))

For two sectors, there are two shocks ε which are independent, hence

E[g(εt,µt+1)] = E[g(ε1t+1, ε2t+1,µt+1)]Φ(ε1t+1)Φ(ε2t+1)

+ E[g(ε1t+1, ε2t+1,µt+1)|ε2t+1 > ε2t+1]Φ(ε1t+1)(1− Φ(ε2t+1))

+ E[g(ε1t+1, ε2t+1,µt+1)|ε1t+1 > ε1t+1](1− Φ(ε1t+1))Φ(ε2t+1)

+ E[g(ε1t+1, ε2t+1,µt+1)|ε1t+1 > ε1t+1, ε2t+1 > ε2t+1](1− Φ(ε1t+1))×

× (1− Φ(ε2t+1))

The same logic can be applied to extend the model to any dimension.

Taking advantage of the truncated distribution of outcomes allows to obtain very precise

19

numerical approximation of the expectations while keeping the number of nodes low. This

result follows from the fact that the approximation is computed over a much smaller

interval ([ε,∞]) and hence fewer nodes are needed compared to standard quadrature. In

other words, only one node is needed to perfectly evaluate the expectations of the outcomes

over (−∞, ε).
The nuisance is that the threshold ε depends on the state and the policy function

parameters and hence it has to be recomputed for each point in the grid separately after

every update of the research policy function. The faster solution is to compute the weights

and nodes on a very fine equidistant grid for thresholds and then to do a fast linear

interpolation.9

Figure 9 demonstrates the benefits of truncated quadrature. Suppose that the goal is

to approximate the expectations Ef(x), where x is normally distributed with mean zero

and standard deviation equal to one and

f(x) =

exp(− (x−1).2

4
− 1) for x > x

0 otherwise

with 3 thresholds x ∈ {−1, 0, 1}. The truncated quadrature is very precise even with just a

single quadrature node, whereas standard quadrature is not precise even with one hundred

nodes.10

If the shocks are independent, then the nodes can be constructed independently and

combined later to get the multidimensional approximation to the expectations. This setting

allows for choosing different precision for different dimensions. For example, the outcomes

in a sector are likely to be much more affected by the shocks to the own sector than by the

shocks to the other sectors. Then, if the computation speed is a concern and a high number

of nodes cannot be applied to all dimensions, the independence of the shocks allows for a

high number of nodes for high precision with respect to own shocks and reduced number

of nodes for shocks of the other sectors to keep the computational costs reasonable.

The standard approach to numerically approximate the expectation in highly dimen-

sional problems is to apply monomial nodes rather than product quadratures. If ε and

µ are independent, it is possible to combine the monomial nodes for µ’s and truncated

9John Burkardt provides a code to compute the nodes and weights for an arbitrary truncated interval,
http://people.sc.fsu.edu/ jburkardt/

10In real life situations it is not practical to have more than 30 quadrature nodes. Even if the function
is fast to evaluate so that the number of nodes does not represent a computationally expensive problem,
the weights get too small for algebra in double precision.

20

−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(x)

(a) threshold=-1

0 1 2 3 4 5
0.18

0.2

0.22

0.24

0.26

0.28

0.3

log(quadrature order)

standard quadrature
truncated quadrature
true solution

(b) threshold=-1

−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(x)

(c) threshold=0

0 1 2 3 4 5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

log(quadrature order)

standard quadrature
truncated quadrature
true solution

(d) threshold=0

−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(x)

(e) threshold=1

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

log(quadrature order)

standard quadrature
truncated quadrature
true solution

(f) threshold=1

Figure 9: Truncated quadrature precision

21

Gauss-Hermite nodes for ε’s. In the first chapter of this thesis I use monomial nodes to

approximate future µ together with the threshold value and two truncated Gaussian nodes

for other sectors ε−i and 3 nodes for own εi.

3.4 More on ergodic grids

Here I discuss some further benefits of using ergodic grids. The great insight of Judd et al.

(2012) is that correlation among the state variables induced by the agent behavior allows

to reduce the grid significantly compared to the standard product grid. However, there are

also accuracy and speed benefits.

I also show how the intermediate information during the solution can be used in order

to speed-up the computation and how to construct more robust ergodic grids. I conclude

this section with some other observations about ergodic grids.

3.4.1 Benefits for accuracy of solution

Figure 10 demonstrate the size-reduction effect of ergodic grids. Clearly, the optimal

behaviour in the model induces strong positive correlation between the level of capital

and productivity; because the productivity process is persistent, higher levels of capital

are accumulated for high levels of productivity and vice versa. The left panel shows the

histogram of the RBC model descibed in the beginning of this chapter, the right panel

shows the set of points generated by simulation against the ergodic grid and standard

product grid.

The ergodic grid captures the cloud of simulated points very closely, whereas the prod-

uct grid covers areas, namely very high level of capital with very low level productivity

and vice versa, which are essentially never visited in the simulation. The fact that we can

exclude such points in the ergodic grid has implication for accuracy of the solution. The

reason is due to the way the policy function is approximated in the projection algorithm, in

particular, due to polynomial approximation. Polynomial approximation is prone to bad

behaviour outside of the approximation range. In the context of different grids, a solution

f1 which achieves very high accuracy on a smaller grid (in terms of area covered) is likely

to misbehave outside of this grid. However this also implies that a different approximated

function f2 (of the same order) over a larger grid is highly unlikely to achieve the same

accuracy over the smaller grid as f1.

In theory, this would not be a problem if it would be possible to use high enough

22

(a) histogram

capital
7.5 8 8.5 9 9.5 10 10.5 11 11.5

pr
od

uc
tiv

ity

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) grid

Figure 10: Simulated solution of a RBC model. Left panel shows the histogram of model
simulation (600000 periods). The model generates high correlation between the two state
variables. In panel (b), blue points represent the simulated series (every 50th point from
the simulation), red points represent the ergodic grid and the black crosses represent the
product grid. Clearly, the product grid covers areas (in top left and bottom right) which
are never visited by the simulated model.

order of polynomial approximation. However, higher approximation is likely to be more

computationally expensive and even if computation time is not a problem, increase in

dimensionality of the solution increase the degree of collinearity problems which makes the

higher solution less accurate. Increasing the order of the polynomials is thus impractical

once the degree gets larger that 5.

Figure 11 demonstrates this observation visually. I take two solutiona of order 4, one

for an ergodic grid and one for a fixed product grid and I evaluate how well the Euler

equation holds (using Gauss-Hermite quadrature of degree 7). As predicted, the accuracy

is better for the solution which was computed over the restricted grid.

Table 1 demonstrates this point further. This table compares the average absolute value

of the errors obtained from the previous exercise. While evaluating the solution obtained

on a product grid over a smaller ergodic grid actually increases accuracy (decreases the

average absolute error), evaluating the solution obtained on the ergodic grid on the product

grid leads to drastic increase of the average absolute errors.

An alternative way how to evaluate the accuracy is to simulate the model and examine

the realised (absolute value of) errors from the Euler equation. The results of this exercise

23

0.30.20.10

productivity

-0.1-0.2-0.3
6

8

10

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

12

capital

e
rr

o
r

(a) ergodic grid

0.20.150.10.050

productivity

-0.05-0.1-0.15-0.2
6

8

10

1

1.5

0.5

-0.5

0

12

capital

e
rr

o
r

(b) larger product grid

Figure 11: Solution accuracy and size of grid. In both panels, blue dots represent the solu-
tion on a product grid, whereas red circles represent solution obtained on an ergodic grid.
Both solution are of order 4. The left panel shows the behaviour of the two solutions on a
smaller ergodic grid. The solution represented by red circles was solved on a similar grid
and hence is more accurate,although neither solution is particularly imprecise. However,
the right panel shows that the approximation obtained on the ergodic grid, which was
indeed very precise over the smaller ergodic grid, is very imprecise over the larger product
grid. Note that the accuracy is particularly bad exactly at the areas which are further
away from the ergodic grid, i.e. high capital with low productivity and vice versa.

are capture in figure 12. In addition to the iterative solution solved on the ergodic grid and

the direct/solver solution obtained over a product grid, I also examine a solution obtained

from a solver on a final ergodic grid from the iterative solution. This is to evaluate the

accuracy of the iterative solution against a standard derivative free solver when keeping

the grid the same.

First, using the ergodic grid increases the accuracy, in particular it compresses the tail

of the error distribution. Second, on the ergodic grid, the accuracy of the solution obtained

iteratively and the one obtained by a solver seems to be very close.

It is not straightforward to compare the solution time. The reason is that even when

using a product grid, the correct location is typically not obvious and hence some time has

to be spent simulating the model, in fact in a similar way as using the iterative solution

on the ergodic grid.

One benefit of the iterative solution is that the time to evaluate the function grows

more slowly with the dimensionality of the problem than the time any solver needs and

hence the iterative procedure is relatively more suitable for larger problems. At the same

24

grid
ergodic product

solution method
solver on p-grid 0.007 0.008

iterative on e-grid 0.001 0.024

Table 1: Average value of absolute errors for model with 4th-order policy function on
different grids. Errors are computed from the Euler equation with 7th order quadrature
(p-grid = product grid, e-grid = ergodic grid).

time, in my experience, solvers are more robust to having badly conditioned problems.

3.4.2 Moving grid during solution

By construction, if ϕ(ξ) is a bad representation of the true policy function p, then the

ergodic grid is constructed over an area of the state space which might not correspond

to the area which would be recovered should the model be simulated with the true p.

This situation might occur when the parameters in ξ are far away from the solution. For

example, if the initial guess was such that there is less capital than under the true solution,

then the errors in the Euler equation will lead to updating ξ such that there is more capital

(hence people work and save more). However, given the approximation error it might be

the case that the solution for ξ will overshoot and in the next simulation there will be too

much work and too much capital.

One advantage of using ergodic grids combined with an iterative solution is that it

provides additional information about the shape of the solution even before the process

has converged. This additional information can be used to accelerate the solution, by

exploiting the saving behavior over the grid.

For a candidate solution φ(ξ̃), if for all points on the grid the solution implies that the

agent is a net saver, then it is clear that either the grid does not represent the correct

solution (assuming that ξ̃ is the correct solution) or the solution is wrong (assuming that

the grid is located at the right area of the state space), or most likely, a combination of

both.

To see this, consider the first possibility. If the agent is saving at each point of the grid,

then in the next period the agent will find herself out of the area covered by the grid for

the point in the current grid with the most capital. Vice versa, if the agent is reducing

her capital stock everywhere on the grid, then next period she will find herself with capital

stock below the area covered by the current grid.

25

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

order of policy function

q
u
an

ti
le

s
o
f

si
m

u
la

te
d

—
E

u
le

r
er

ro
rs

—

iter q50
iter q95
iter q999
solver q50
solver q95
solver q999
e-solver q50
e-solver q95
e-solver q999

Figure 12: Errors of the Euler equation in the simulation. This figure captures the differ-
ences in solution accuracy for three methods, iterative using ergodic grid (blue lines), solver
on a exogenous product grid (red lines) and a solver on ergodic grid (black lines). The
style of line captures different quantiles; solid median, dotted 0.95th and dashed 0.999th
percentile.The solver used is MATLAB’s fminsearch, which is a derivative free algorithm
using the NelderMead method.

At the same time, even if the current ξ is very close to the true solution for the grid

which would cover the area where the correct model lives, search for the correct solution

on a wrong grid will not converge to the correct value.

If this is the case and if the model is very time-consuming to simulate (which is often

the case for highly dimensional settings), it is possible to save time by adjusting the grid

directly without resorting to re-simulating during every iteration. In the case where the

behavior implies saving at each point of the grid, I adjust the capital at each point of the

grid by adding a small constant (and vice versa, reduce the capital stock at each point of

the grid if the agent is reducing the capital stock at each point on the grid). That way,

the correlation structure between the state variables is maintained while the grid is moved

toward the area the intermediate solution suggests it should go to.

26

3.4.3 Grid stretching

Divergence in simulation can occur due to two possible reasons. First, the algorithm fails

on the grid, meaning that due to all the reasons discussed above, the iterative algorithm or

the solver diverges when looking for the parameters of the policy function ξ. To address this

possibility of algorithm failure, Maliar and Maliar (2014) introduce the robust regression

methods.

However, secondly, there is also the possibility that the algorithm finds (converges to) a

particular ξ on a given grid, but then the simulation step diverges when a new simulation is

attempted. One reason why this can happen is that the solution found on the grid fails to

represent well the true solution in a neighborhood of the convex hull defined by all the points

in the simulation. This can happen just by bad luck in the process of randomly selecting the

grid from the simulated points.11 However, the chance of this problem occurring increases

with the number of outlier points eliminated from the simulation before the grid is selected.

This problem typically does not occur when the grid is exogenously set to cover a much

wider range than where the model lives.

However, it is possible to exploit the advantages of both approaches. In grid stretching

the ergodic grid is constructed using two sets of points. The first set comes from the

simulation directly, just as in the standard approach pioneered by Judd et al. (2012). The

second set is constructed from the simulation to cover a wider area while maintaining the

correlation present in the data.

One simple approach can be to stretch points further from the median. It is also easy

to stretch in a particular direction more than others and/or use nonlinear stretching as

demonstrated in figure 13. Stretching is going to create new outliers and some points which

used to be outliers in the simulation data will now be surrounded by many points from the

stretched set. Combining stretching with cutting outliers allows us to avoid divergence by

constructing dense and more uniformly covered grids.

The main motivation to use ergodic grids is to reduce the grid by exploiting the strong

correlation among the state variables implied by the model. This allows to eliminate

potentially large areas which the simulated model never visits. However, this also by con-

struction introduces collinearity and hence potentially can make the solution more difficult

to find. Consider a situation where there is perfect correlation between productivity and

11Typically, one makes a long simulation of hundreds of thousands of periods to explore all the places
the model can go. However, it is very memory demanding to compute and store the distance matrix of all
the points, so a reasonable step is to randomly pick only a fraction of points from the simulation and then
construct the grid using only those selected points.

27

1 function Σ = s t r e t c h i n g (k,z , s t r e t c h z u p stretch z down , s t r e t c h k u p stretch k down)

2 Sigma in = [k,z] ; %po i n t s from the s imu l a t i o n

3 %mat r i x o f s t r e t c h i n g c o e f f i c i e n t s

4 s t r e t c h c o e f u p = repmat ([s t r e t c h k u p s t r e t c h z u p] , s ize (Sigma in , 1) ,1) ;

5 s t r e t ch coe f down = repmat ([s t re tch k down st re tch z down] , s ize (Sigma in , 1) ,1) ;

6 %con s t r u c t the c e n t e r p o i n t (median o f the s imu l a t i o n)

7 Sigma mean = repmat (median(Sigma in , 1) , s ize (Sigma in , 1) ,1) ;

8

9 %app l y s t r e t c h i n g

10 S igma in ext ra up = Sigma in+s t r e t c h c o e f u p .∗ (min(0 , Sigma in−Sigma mean)) ;

11 Sigma in extra down = Sigma in−s t r e t ch coe f down .∗ (sqrt (abs (max(0 , Sigma in−Sigma mean)))) ;

12 %combine s e t s

13 Σ = [Sigma in ; S igma in ext ra up ; Sigma in extra down] ;

Figure 13: Stretching, allowing for different degree of ergodic grid expansion above and
below the steady state of the simulation defined by the median point.

capital. In this economy, the ergodic grid would lie on a line. If this is the case, then

the polynomials capturing capital are perfectly correlated with the polynomials capturing

productivity.

This fact shows why the collinearity is more likely to be a problem with ergodic grids

than with standard product grids. In my experience, this effect is particularly strong if a

grid has one area where the points are distributed uniformly and then one outlier located

away from the main cluster. Usually, it is possible to avoid such grids by a combination of

eliminating the outliers and stretching at the same time.

3.4.4 Convergence and accuracy consideration

The ergodic grid is by construction a stochastic object. The parameters obtained thus

depend on a particular realisation of the grid and hence are also stochastic. This is due

to the fact that the coefficients ξ are specific to the particular shape of the policy func-

tion which changes every time the normalising parameters ν are changed. However, if

the procedure works, then despite having different parameters in the policy function, the

outcomes should be similar. Therefore, it might be convenient to measure the convergence

by comparing medians (and higher order moments) of various variables obtained from the

simulated data rather than comparing the policy rule parameters directly.

28

4 Conclusion

The popular ”Moore’s law” suggests that the computing power doubles roughly every

two years. Although impressive enough, the rate of real progress of quantitative methods

enabling economists to solve ever more complicated models with higher precision is much

higher. New developments in software and algorithms might be just as important. These

developments are the focus of this chapter.

I started by reviewing some recent developments focusing on the solution of large

macroeconomic models and suggested extensions which make these methods more robust,

faster and usable in situations where kinks might play an important role.

This chapter has three contributions which can be used in a wide range of solution

algorithms. First, I show how to effectively vectorise the code used in projection methods

to speed-up the solution by over 50 times against implementation with loops only. Second,

I show how to use truncated Gaussian quadrature to effectively evaluate expectations over

shocks with truncated effects. Third, I suggest a way how to better characterise the state

space when constructing the approximations of policy functions. This is an alternative

or possibly a complement to the the robust regression methods introduced in Judd et al.

(2011), however it might provide better insight in case of troubleshooting divergent cases.

In the context of ergodic grids, I show how stretching might be useful to obtain a

solution which has better properties in the wider neighborhood of the simulated data.

This is particularly useful for situations where the initial guess is not very good and hence

the grid moves a lot before the algorithm converges as it increases stability and reduces

the chances that the algorithm diverges. I also suggest a possibility of moving the grid

using the information obtained from the saving function to reduce the number of times

the model needs to be simulated. Finally, I compare the accuracy of iterative versus solver

solutions on an ergodic and a product grid.

29

References

Aruoba, S. B. and Fernandez-Villaverde, J. (2014). A Comparison of Programming

Languages in Economics. NBER Working Papers 20263, National Bureau of Economic

Research, Inc.

den Haan, W. J. and Marcet, A. (1990). Solving the Stochastic Growth Model by

Parameterizing Expectations. Journal of Business & Economic Statistics, 8 (1), 31–34.

Judd, K. L., Maliar, L. and Maliar, S. (2011). Numerically stable and accurate

stochastic simulation approaches for solving dynamic economic models. Quantitative

Economics, 2 (2), 173–210.

—, — and — (2012). Merging Simulation and Projection Approaches to Solve High-

Dimensional Problems. NBER Working Papers 18501, National Bureau of Economic

Research, Inc.

Maliar, L. and Maliar, S. (2014). Chapter 7 - numerical methods for large-scale dy-

namic economic models. In K. Schmedders and K. L. Judd (eds.), Handbook of Compu-

tational Economics Vol. 3, Handbook of Computational Economics, vol. 3, Elsevier, pp.

325 – 477.

Marcet, A. (1988). Solution of nonlinear models by parameterizing expectations. Tech.

rep., Carnegie Mellon University Working paper.

30

	Introduction
	RBC model with variable investment costs

	Selected existing literature on solving large models with global methods
	Numerically stable methods
	Ergodic grid construction

	New methods
	Elimination of loops for projection problems
	Policy function shape and the representation of the state space
	Quadrature with truncated outcomes
	More on ergodic grids
	Benefits for accuracy of solution
	Moving grid during solution
	Grid stretching
	Convergence and accuracy consideration

	Conclusion

